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Granular cooling of hard needles

Martin Huthmann, Timo Aspelmeier, and Annette Zippelius
Institut für Theoretische Physik, Universita¨t Göttingen, D-37073 Go¨ttingen, Germany

~Received 9 February 1999!

We have developed a kinetic theory of hard needles undergoing binary collisions with loss of energy due to
normal and tangential restitution. In addition, we have simulated many particle systems of granular hard
needles. The theory, based on the assumption of a homogeneous cooling state, predicts that granular cooling of
the needles proceeds in two stages: An exponential decay of the initial configuration to a state where transla-
tional and rotational energies take on a time independent ratio~different from unity!, followed by an algebraic
decay of the total kinetic energy;t22. The simulations support the theory very well for low and moderate
densities. For higher densities, we have observed the onset of the formation of clusters and shear bands.
@S1063-651X~99!00407-9#

PACS number~s!: 45.05.1x, 05.20.Dd, 51.10.1y
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I. INTRODUCTION

Gas kinetics of inelastically colliding particles has r
ceived a lot of interest in recent years, mainly in the cont
of granular matter@1#. Boltzmann’s equation has been ge
eralized to inelastic collisions which are characterized
normal restitution and possibly tangential friction or resti
tion @2#. Extensive simulations have been performed, in p
ticular event driven~ED! algorithms are very effective fo
the kinetic gas regime. A variety of interesting phenome
have been observed, for example instabilities of the hom
geneous state towards shearing or clustering@3–5#. Most
studies so far have concentrated on spherically symme
objects, whereas real grains are in general nonspherical
often randomly shaped. The question arises whether the
served phenomena are generic for granular matter or spe
for spherical objects.

In this paper we discuss the cooling properties of h
needles in terms of a time evolution operator, which
counts for the exchange of translational and rotational ene
as well as for normal and tangential restitution. In additi
we have performed ED simulations of large systems with
to 20 000 needles.

For low and moderate densities the system does not s
any clustering instabilities but remains homogeneous on
longest time scales, when the energy has decayed to 10211 of
its initial value. This allows us to formulate an approxima
kinetic theory, based on the assumption of a homogene
state. Cooling is found to proceed in two stages:~1! A fast
exponential decay to a state which is characterized by a
independent ratioc of translational to rotational energy.~2!
A slow algebraic decay liket22 of the total kinetic energy.
The latter is determined by the coefficient of restitution a
by the distribution of mass along the needles, including
uipartition for one particular mass distribution. Simulatio
and approximate analytical theory are found to agree wit
a few percent.

For high densities we observe long range correlations
the velocity field and a buildup of large density fluctuation
These large-scale structures are similar to those seen in d
systems of smooth spheres@3–6#. No alignment of the
needles with the hydrodynamic flow field is observed.
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II. DYNAMICS OF COLLISIONS

Consider two rods of equal lengthL, massm and moment
of inertia I. The center of mass coordinates are denoted br1
andr2. The orientations are specified by unit vectorsu1 and
u2, which span a planeE12 with normal

u'5
u13u2

uu13u2u
. ~1!

We decomposer125r12r2 into a component perpendicula
r12
' 5(r12•u')u' and parallel r12

i 5:(s12u12s21u2) to E12

~see Fig. 1!. The rods are in contact@7,8# if r12
' 50 and si-

multaneouslyus12u,L/2 andus21u,L/2.
We want to determine the postcollisional center-of-ma

velocities (v18 , v28) and angular velocities (v18 , v28) in terms
of the precollisional velocities (v1 , v2 , v1, andv2) or mo-
menta (p15mv1 , p25mv2). Conservation of total linear
momentum implies

p185p11Dp,

p285p22Dp. ~2!

FIG. 1. Configuration of two needles projected in the planeE12

spanned by the unit vectorsu1 andu2.
654 ©1999 The American Physical Society
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PRE 60 655GRANULAR COOLING OF HARD NEEDLES
No torque acts at the points of contact, so that

v185v11
s12

I
u13Dp, v285v22

s21

I
u23Dp ~3!

holds. To determine the collision process we consider
relative velocity of the contact points which is given by

Vr5
p12p2

m
1s12u̇12s21u̇2 . ~4!

We introduce two parameterse andb to characterize norma
and tangential restitution:

Vr8•u'52eVr•u' , eP@0,1#, ~5!

Vr8•u152bVr•u1 , ~6!

Vr8•u252bVr•u2 , bP@21,1#. ~7!

The above equations characterize the collision process c
pletely and determine the postcollisional momenta in ter
of the precollisional ones.

In this paper we specialize to the case of perfectly smo
needles, i.e.,b521, which considerably simplifies the co
lision rules. The change of linear momentum is then given
Dp5au' with

a5
2~11e!~Vr•u'!

2/m1~s12
2 1s21

2 !/I
. ~8!

III. ANALYTICAL THEORY

The derivation of a pseudo-Liouville operator for a sy
tem of N colliding, hard rods proceeds similar to the case
hard spheres@6,9,10#. The rods are confined to a thre
dimensional volumeV and interact via a hard core potentia
The velocity of orientationu̇15v13u1 is confined to the
plane perpendicular tou1 and is therefore described bytwo
generalized canonical momenta,pu1

5I u̇1 and pf1

5I ḟ1sin2u1, using spherical coordinates for the orientatio
The total kinetic energy then reads

Hkin5(
i 51

N S 1

2M
pi

21
1

2I
pu i

2 1
1

2I sin2u i

pf i

2 D . ~9!

The time development of a dynamical variableA
5A„$r i(t),ui(t),pi(t),u̇i(t)%… for positive times is deter-
mined by the pseudo-Liouville operatorL1

A~$r i ,ui ,pi ,u̇i%,t !5exp~ iL1t !A~$r i ,ui ,pi ,u̇i%,0!.
~10!

The pseudo-Liouville operator consists of two parts,L1

5L01L18 . The first describes free streaming and can
expressed by the Poisson bracket with the kinetic part of
Hamiltonian iL05$Hkin , . . . %P.B.. The second,L18 , de-
scribes binary collisions of two hard rods
e

m-
s

th

y

-
f

.

e
e

iL18 5
1

2 (
iÞ j

U d

dt
ur i j

'uUQS 2
d

dt
ur i j

'u DQ~L/22usi j u!

3Q~L/22usji u!d~ ur i j
'u201!~bi j 21!. ~11!

HereQ(x) is the Heaviside step function. The interpretati
of the pseudo-Liouville operator of Eq.~11! is intuitively
clear. The factorud/dtur i j

'uu is the component of the relativ
velocity of the contact points perpendicular to both rods
yields the flux of incoming particles.Q(2d/dtur i j

'u) is non-
zero only if the two particles are approaching andQ(L/2
2usi j u)Q(L/22usji u)d(ur i j

'u201) specifies the conditions
for a collision to take place. The operatorbi j replaces mo-
menta and angular momenta of particlesi and j before colli-
sion by the corresponding ones after collision.

The time evolution of nonequilibrium expectation valu
of an observableA($r i ,ui ,pi ,u̇i%,t)5A(G;t) is defined by

^A& t5E dGr~G;0!A~G;t !5E dGr~G;t !A~G;0!.

~12!

G denotes the whole phase space andr(G;t) is theN-particle
phase space distribution function, whose time evolut
r(G;t)5exp(2iL1

† t) r(G;0) is governed by the adjointL1
†

of the time evolution operatorL1 . Here we are interested in
the average translational and rotational kinetic energy
particleEtr5m/(2N)( iv i

2 andErot5I /(2N)( ivi
2 , as well as

the total kinetic energyE5Etr1Erot .
It is impossible to calculate expectation values as given

Eq. ~12! exactly and we are forced to approximate t
N-particle distribution function. We assume that the syst
stays spatially homogeneous and that both linear and ang
momenta are normally distributed. In a system which is p
pared in a thermal equilibrium state the initial decay ra
can be computed exactly and yield different values for av
aged translational and rotational energy. This suggests d
ing two different temperatures for the translational and ro
tional degrees of freedom, corresponding to the followi
ansatz for theN particle distribution function@10#:

rHCS~G;t !;expF2
Etr

Ttr~ t !
2

Erot

Trot~ t !G . ~13!

rHCS(G;t) depends on time via the average translatio
Ttr(t)52/3̂ Etr& and rotational energyTrot(t)5^Erot&. We are
interested in the cooling properties of a gas of hard nee
and compute the expectation valuesṪtr52/3̂ iL1Etr& and
Ṫrot5^ iL1Erot&. Using the approximate many particle distr
bution of Eq.~13!, we find two coupled differential equation

2Ṫtr

gTtr
3/2~11e!

52E
h

d2r
S 11

Trot

T tr
kr2D 1/2

11kr2

1
11e

2 E
h

d2r
S 11

Trot

T tr
kr2D 3/2

~11kr2!2
, ~14!
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4Ṫrot

3gTtr
3/2~11e!

52E
h

d2r

Trot

T tr
kr2S 11

Trot

T tr
kr2D 1/2

11kr2

1
11e

2 E
h

d2r

kr2S 11
T rot

Ttr
kr2D 3/2

~11kr2!2
,

~15!

with g5(2NL2Ap)/(3VAm) andk5(mL2)/(2I ). The two
dimensional integration extends over a square of unit len
centered at the origin.

IV. SIMULATIONS

Simulations are performed using an event driven al
rithm where the particles follow an undisturbed translatio
and rotational motion until a collision occurs. The velociti
after the collision are computed according to the collis
rules Eqs.~2!–~8!. For this algorithm collision times for eac
pair of needles have to be determined numerically, where
follow the algorithm proposed by Frenkel and Maguire@7#.
More efficiency is achieved by using the stratagem of L
bachevsky@11# and a linked cell structure, which allows u
to look for collision partners only in the neighborhood. T
algorithm is reasonably fast as long as there are only
needles in each cell of the linked cell structure, so that
time consuming search for collisions is restricted to the f
needles in their own and the neighboring cells. On the ot
hand, we have to choose the linear dimension of these c
to be larger than the length of a needle, so that for h
densities there are many needles in each cell and the a
rithm becomes slow.

We mention here that the algorithm runs into numeri
problems if the time between two collisions becomes
short to be resolved properly as it usually happens during
inelastic collapse. To circumvent this problem, we use thetc
model@12#: if the time between a collision and the precedi
one for at least one particle is smaller than a critical valuetc ,
e is set to 1. We believe that the influence of this proced
is small: there occurred only two instances in the simulati
presented here.

We performed large scale simulations for various valu
of e in the regime of small and moderate densit
@(N/V)L3&1#. For high densities@(N/V)L3*10# only a
few simulations could be done. We show here a simulat
of N520 000 needles in a box of length 12L with e50.9.

V. HYDRODYNAMIC QUANTITIES

To investigate deviations fromhomogeneity, we divide
the simulation box into cells whose linear dimension is ch
sen to be large compared to the length of the needles
small compared to the box size. Given the limitations due
finite size we choose cells such that on average abou
needles are in one cell. We then compute for each cell
number densityra5(1/Vcell)( i Pcella

15:^1&a , the transla-

tional energy per particleraEa
tr5^(m/2)v i

2&a and the hydro-
dynamic temperatureTa

tr5Ea
tr2mUa

2/2.
h,
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Momentum organizationof the particles shows up in th
hydrodynamic flow fieldraUa5^v i&a . A good indicator
@13# for the build up of long range velocity correlations is th
ratio of the total kinetic energy of the flow to the total inte
nal energySª@(a(m/2)raUa

2 #/((araTa
tr).

To investigateorientational orderingwe compute in ad-
dition the quadrupolar moment of the needlesQi

e

ª@3(ui•e)221#. The unit vectore is chosen either along th
direction of the particle’s velocity or fixed in space.

VI. SMALL AND MODERATE DENSITIES

For densities such that (N/V)L3&1, the system remains
homogeneous, orientationally disorderd and without lo
range velocity correlations up to the longest observed t
scales, i.e., when the energy has decayed to 10211 of its
initial value. To check for spatial clustering, histograms
fluctuations of the local density, velocity and translation
energy were compared to those of an elastic system bu
significant difference could be observed. Fluctuations, e
of the local density do not increase with time but rema
stationary, so that we can compare our approximate the
with the simulations. We show here a simulation which h
been performed for 10 000 needles in a box of length 24
This corresponds to a density of (N/V)L3'0.72 or an aver-
age center of mass separationl /L'1.1.

In this range of densities, cooling of a gas of hard need
proceeds intwo stages. First, there is an exponentially fas
decay towards a state which is characterized by a cons
ratio of translational and rotational energy. Second, ther
an algebraically slow decay of both, the translational a
rotational energy, such that their ratio remains constant. B
of these regimes are correctly predicted by our approxim
theory, based on the assumption of spatial homogeneity

In Fig. 2 we plot the numerical solution of Eqs.~14! and
~15! for e50.8 andk56 as a function of dimensionless tim
t5gATtr(0)t. The total kinetic energyE5 3

2 Ttr1Trot @in
units of Ttr(t50)] and the ratioTtr /Trot are compared to
simulations. Analytical theory and simulation are found
agree within a few percent over eight orders of magnitude

FIG. 2. Double logarithmic plot of total kinetic energyE
53/2Ttr1Trot in units of Ttr(t50) and ofTtr /Trot versus dimen-
sionless timet. The simulation data are from a system of 100
needles, box of length 24L ande50.8.
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PRE 60 657GRANULAR COOLING OF HARD NEEDLES
time. @Trot(0)50 has been chosen as initial condition.#
The decay ofTtr /Trot to a constant value happens on

time scale of order one. In this range of times the total
netic energyE remains approximately constant~on a loga-
rithmic scale! and decays liket22 only after translational and
rotational energy have reached a constant ratio.

Equations~14! and ~15! allow for a solution with a con-
stant ratio ofTtr /Trot5c and bothTtr andT rot decaying like
t22. To determine the constantc, we plug the ansatzcTrot

5Ttr into Eqs. ~14! and ~15! and usecṪrot2Ṫtr50. This
yields an implicit equation forc, whose solution is plotted in
Fig. 3 as a function ofk ande.

Settingc51 in this implicit equation yields an equatio
for k which reads

~12e2!E
h

d2r

12
3

2
k* r 2

A11k* r 2
50, ~16!

i.e., equipartition holds forall values of e,1 if k
5(mL2)/(2I ) is set to the particular valuek* 54.3607,
given as the solution of Eq.~16!. For e51, equipartition
always holds, independent ofk.

For k,k* we find Ttr,Trot and for k.k* Ttr.Trot .
Hence the distribution of mass along the rods determines
asymptotic ratio of rotational and translational energy,
cluding equipartition as a special case.

The asymptotic solution discussed above is approac
for arbitrary initial conditions for long times. If a totally
elastic system is prepared in an initial condition withTtr
ÞTrot , we expect that the equilibrium state~equipartition! is
reached exponentially fast with a relaxation rate given bn
;gAE(0). As long as energy dissipation due to inelas
collisions is small, we expect similar behavior, as indeed
numerical simulations show.

VII. DENSE SYSTEMS

Simulations of inelastic hard spheres show well dev
oped density clusters and vortex patterns@3–5,14#, if al-
lowed to evolve freely for sufficiently long times. The dom

FIG. 3. Asymptotic ratioTtr /Trot as a function ofe andk.
-

he
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e
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nant mechanism for the formation of vortex structures h
been traced back to noise reduction@15#: After many colli-
sions the particles move more and more parallel. It is
cleara priori, whether such a mechanism should also ap
to rotating needles. In the simulations we clearly observe
formation of large scale structures in the velocity field.
Fig. 4 we show the hydrdynamic flow field after 600 col
sions per particle for a system of density (N/V)L3'11.6,
corresponding to an average center of mass separationl /L
50.44.

We observe two shear bands~note the periodic boundary
conditions!, which move in opposite directions. Within
band the local flow field is to a large degree aligned. T
dominant part of the velocity of each particlev i is given by
the flow U so that a large fraction of the kinetic energy is
the flow and the ratioS~defined in Sec. V! should be high. In
Fig. 5~a! we showSas a function of the number of collision
per particle.S increases from a value of 0.05 to a value
about 2.5, i.e., by a factor of 50.

To visualize spatial inhomogeneities we plot in Fig.

FIG. 4. Flow field of the system@20000 needles in a box o
volume (12L)3 and e50.9] after 600 collisions per particle~the
length of the velocity vectors are in arbitrary units!.

FIG. 5. ~a! S as a function of collisions per particle.~b! Double
logarithmic plot of kinetic energy per degree of freedomTtr andTrot

in units of Ttr(t50) versus dimensionless timet.
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regions with local deviation of the densityDra.0.5 at the
beginning of the simulation and after 600 collisions per p
ticle. Obviously clustering occurs. To quantify this observ
tion we have computed the second moment of the den
fluctuations. It is found to increase by a factor of 6 over
initial value after 400 collisions. After about 500 collision
per particle it decreases again, indicating that clusters f
and dissolve again.

For spheres one observes@3,4,14# that most of the mass i
concentrated in the two counterflowing streams. To check
correlations between flow field and mass density, we plo
Fig. 7 the components of the flow fieldUy , Uz and the den-
sity fluctuation as a function ofx, for fixed y56L and aver-
aged over 10 values ofz51.2L, . . . ,12L. This and similar
plots give no hint of a strong correlation between flow fie
and density fluctuations.

We also observe a weak tendency towards organizatio
rotational velocities. The ratio of the kinetic energy of t

FIG. 6. ~a! Density at the beginning of the simulations. On
very few and small regions have a more than 50 % higher den
than average.~b! Large regions with higher density have built u
after 600 collisions per particle.
-
-
ty

m

r
n

of

local rotational flow to the local rotational temperature
found to increase by about 50%~as compared to an increas
by a factor of 50 for the translational velocity!. Conse-
quently, the deviation from Haff’st22 cooling law is much
stronger for the translational degrees of freedomTtr than for
the rotational degrees of freedomTrot @see Fig. 5~b!#.

To investigate alignment of the needles with the lar
scale velocity flow field, we compute the quadrupolar m
mentum Qi

e with respect to the particle velocity, i.e.,e
5v i /uv i u. A histogram over all needles is shown in Fig.
The configuration after 600 collisions per particle is co
pared to the initial state which corresponds to randomi
orientations. In addition we plot the theoretical prediction f
the histogram~straight line! which has been calculated on th
assumption that rods are oriented randomly and indepen
of their velocity. No indication for alignment of the needle
can be seen. Neither do we observe a tendency for glo
ordering.

ty

FIG. 7. y and z component of the flow field and fluctuation o
the density as a function ofx, for fixed y56L, averaged over 10z
values.

FIG. 8. Histogram ofQi
e. The distribution after 600 collisions

per particle coincides with the initial distribution and with the pr
diction for randomly distributed orientations.
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VIII. CONCLUSION AND OUTLOOK

Our aim was to systematically investigate the cooling d
namics of a granular system of nonspherical objects.
have chosen the simplest nonspherical grains, hard nee
for which we were able to formulate an approximate kine
theory, generalizing methods of kinetic theory of elastic s
tems @7# to inelastic collisions with normal and tangenti
restitution. In addition, simulations of large systems for va
ous densities have been performed.

Analytical theory is so far restricted to the regime of mo
erate densities, where the interparticle spacing is compar
to or larger than the length of the needles. Such syst
remain homogeneous and show no long range correlation
the velocity field or orientation. Cooling proceeds in tw
stages:~1! An exponentially fast initial decay towards a sta
with constant ratio of translational to rotational energy a
~2! an algebraically slow decay, such that the above ra
remains constant in time. The ratio of translational to ro
tional energy is controlled by the coefficient of normal re
titution and by the distribution of mass along the rods.
ied
ng
ds

a,
-
e
es,

-

-

-
le
s
in

d
io
-
-

Simulations in the dense regime, where the interpart
spacing is smaller than the length of the needles, reveal la
scale structures in the translational velocity field. The den
does not remain homogeneous, but clusters form and
solve again. Cooling proceeds in three stages. For short
intermediate time scales the relaxation is similar to the l
density system, whereas on the longest time scales we
serve a crossover from the algebraic decay to an even slo
decay. This latter decay may be identical to the asympt
cooling law of hard inelastic spheres,t2d/2 in d dimensions,
where t is the average number of collisions suffered by
particle within timet, which has been derived in@13#.

We plan to generalize the hydrodynamic analysis
grains with rotational degrees of freedom and in particu
hard rods. Another possible extension of our work are ro
of finite width and with spherical endcaps.
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